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Abstract. The structure and lattice dynamics of CuInSe2 were studied usingab initiocalculations.
The phonon dispersion relations and phonon density of states were calculated using the direct
method. The results are in good agreement with recently obtained inelastic neutron scattering data.

1. Introduction

First-principles calculation of crystal structure and crystal properties is becoming a standard
technique, and progress in the methods, algorithms, and computer capabilities allows us to
study larger and larger systems. This is true also for studies of lattice dynamics of crystals
where two approaches are currently in use: the linear response method and the direct method.

In the linear response method the dynamical matrix is obtained from the modification of
the electric density, via the inverse dielectric matrix. The dielectric matrix is calculated from
the eigenfunctions and energy levels of the unperturbed system. The dynamical matrix can
be determined at any wave vector in the Brillouin zone with the computational effort required
comparable to that of a ground-state optimization. Only linear effects, such as harmonic
phonons, are accessible to this technique.

The direct-method approach is based on the solution of the Kohn–Sham equation and it
allows one to study both linear and non-linear effects. The calculations deal with a super-
cell, which allows explicit account to be taken of any perturbation. This method is rather
straightforward computationally and there are a few standard software packages. The main
limitation is the small number of unit cells which form the supercell. Within the direct method
the phonon frequencies are calculated from Hellmann–Feynman forces generated by the small
atomic displacements, one at the time. Hence, using the information of the crystal symmetry
space group the force constants are derived, and the dynamical matrix is built and diagonalized,
and its eigenvalues arranged into phonon dispersion relations. In this way, phonon frequencies
at selected high-symmetry points of the Brillouin zone can be calculated. However, when the
interaction range ceases to be within the supercell, phonons at all wave vectors are determined
exactly. This statement has to be modified for polar crystals for which the macroscopic
electric field splits off the infrared-active optic modes. This is the origin of LO/TO splitting,
which, for very simple crystals, has been found by calculating the effective Born charge tensor
and electronic dielectric constant introduced into the dynamical matrix in the form of a non-
analytical term [1] or by calculating LO modes from elongated supercells [2].
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To study the crystal lattice dynamics, the direct method has been used for monatomic (K,
Na, Li, Si) [3,4], binary (MgO, GeS, TiC, ZrO2, SiO, GaAs) [2,4–8], and ternary (SrTiO3) [9]
compounds. These are really simple-cubic systems, where the atom positions are fixed by site
symmetry and the only optimized parameter is the lattice constant. The more complicated
tetragonal crystal AgGaSe2 had already been studied by Karkiet al and Acklandet al. The
first work (reference [10]) provides only the zone-centre phonons, and the calculations made
by Acklandet al in reference [4] were carried out for a supercell restricted to a primitive unit
cell with eight atoms, which gives exact phonons only at the0 point.

Ab initiocalculations are generally expected to have predictive power [11,12]. One expects
this method to be able to predict structural and dynamical properties of the crystals, including
phonon frequencies, soft modes, and phase transitions at ambient and high pressures. The
first step in this strategy is to calculate the harmonic phonon modes. In this case it is better
to use the direct method, because it will allow the subsequent taking into account of both the
harmonic and the anharmonic contributions. The price to be paid for taking this approach is
the additional calculation of the LO modes for polar crystal, which, however usually do not
cause phase transitions.

In this paper we consider the CuInSe2 chalcopyrite (CIS) having the body-centred-tetra-
gonal structure. We were encouraged to undertake the present work by the recent appearance of
new experimental neutron scattering data for CIS [13], which allow us to test the applicability
of theab initio approach to the vibrational properties of the crystal. Furthermore, the family of
I–III–VI 2 semiconductors, crystallizing in the chalcopyrite structure (I 4̄2d) [10, 14], is used
in a number of applications [14]. Copper indium diselenide, CuInSe2 (CIS), which is a typical
representative of this family, has been used in high-efficiency thin-film solar cells, because of
its high absorption coefficient and good chemical stability [15]. The structural, electrical, and
optical properties, as well as the lattice vibrations of CIS, have been described in a number of
papers [16–18]. The aim of this work is to determine the phonon dispersion relations along
high-symmetry directions and the phonon density of states from first-principles calculations
using the direct method.

2. Calculations

The crystal structure of CIS has anI 4̄2d (D12
2d) symmetry as was confirmed by theab initio

pseudopotential method [19] within the local density approximation (LDA) using the CASTEP
package [20]. The structural optimization process was performed by solving the Kohn–Sham
equation, and minimizing the total energy with respect to relaxation of electrons, ions, and
unit-cell parameters. The Hellmann–Feynman (HF) forces and stresses were also derived.
The norm-conserving, non-local pseudopotentials for Cu, In, and Se were used. A plane-wave
basis set with a 720 eV cut-off was applied, which gives about 17 500 plane waves per band.
The integration over the Brillouin zone was performed with weighted summation over two
wave vectors generated by the Monkhorst–Pack scheme [21], which corresponds to a 2×2×1
k-point mesh. The correction for the finite plane-wave basis set was included in the total
energy. The Pulay stress [22], calculated using three different cut-off energies, was equal to
−0.85 GPa. All calculations were done for a 1× 1× 1 supercell (crystallographic unit cell)
with 16 atoms. The geometry optimization was carried out with the constraints of theI 4̄2d
space group, with respect to the lattice constantsa andc and theu-parameter of the Se position.
In principle, such a structure can still be unstable if the symmetry constraints are removed. We
have performed this check by optimizing the structure in the 1× 1× 1 supercell without any
point symmetry elements, i.e. in the space groupP1. The structure optimized inP1 symmetry
is stable and shows negligible changes in the lattice constants,u, and the unit-cell angles.
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The phonon dispersion curves were calculated by the direct method [3,6,23,24] using the
program PHONON [25]. The eight coordination shells were considered with 19 independent
force-constant matrices and 136 independent potential parameters. Knowledge of these force
constants allows one to test the range of the interaction potential. To do that, similarly to the
procedure used in reference [26], we have calculated the absolute values of the eigenvalues
of the 3× 3 force-constant matrices and plotted them against the distance between acting
atoms. The result for the 1× 1× 1 supercell shows that the interaction drops down within
the size of the supercell by one order of magnitude in thea-direction and by at least three
orders of magnitude in thec-direction. The Brillouin zone of the chalcopyrite structure has
five high-symmetry points:0, N, P, X, and Z. According to the direct method, the 1× 1× 1
supercell gives exact phonon frequencies at0 and Z points only. To calculate a complete set
of HF forces, seven independent displacements were required by the direct method. We used
displacement amplitudes equal to 0.03 Å, and displacement directions alongx andz for Cu
and In, and alongx, y, andz for the Se atom. To minimize systematic errors and anharmonic
effects, the average displacements in both positive and negative directions were used.

3. Results

In table 1 the calculated structural parameters of CIS are compared with experimental data [16].
The differences are rather small and do not exceed 1%.

Table 1. Structural parameters of CIS.

Experiment, Ab initio,
reference [16] this work

a0 (Å) 5.782 5.832
c0 (Å) 11.620 11.622
u 0.235 0.222

In table 2 the calculated frequencies at the0 point have been compared with experimental
results of infrared (IR) [27–32], Raman (R) [27,33], and neutron (N) [13] measurements. The
quite large scatter of the observed experimental frequency data is attributable to the different
penetration depths in IR, Raman, and neutron scattering as well as to the different sensitivities
to surface effects [13]. One can see thatab initio calculations reproduce the mode frequencies
very well. In addition, our data relate better to neutron scattering results, which are of bulk
type, than to the Raman or infrared data.

In figure 1 we present phonon dispersion curves for CIS with all high-symmetry points.
Our result includes longitudinal optic–transverse optic (LO/TO) splitting [34], which is
determined by the effective charge tensors and electronic dielectric constant. The splittings
show up as discontinuities of phonon branches at the0 point, characteristic for polar crystals
with tetragonal structures. The currentab initio methods referred to in the literature [2, 35]
provide the LO/TO splitting, but in each case considered the size of the simulated unit cell is
small. The 16-atom body-centred-tetragonal unit cell of CIS is too large for this treatment.
Additionally, it has been shown experimentally that in the CIS case the LO/TO splitting is very
small and is in the range 1–2%, except for an E mode at 6.452 THz, where the difference is 9%.
Therefore, we have limited our consideration to a semi-empirical method—that is, to deriving
LO modes at the0 point from experimental frequencies. We would like to stress, however, that
this procedure modifies only the LO phonon branches, and does not influence the remaining
phonon branches at all. In figure 1 the LO/TO splitting was found by adding to the dynamical
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Table 2. Frequencies of phonons at the0 point (in THz).

IR R, 300 K
Ab initio R IR R, 100 K IR N

Symmetry (this work) Activity [27] [28–31] [33] [32] [13]

A1 5.314 R 5.28 5.34
5.58 5.34

A2 5.586 Silent 5.90
A2 5.262 Silent 4.83

ELO/ETO 7.315/6.452 R, IR 8.21/7.44 6.87/6.39 6.90/6.51 6.82/6.12 6.44
8.24/7.55 6.99/6.51

ELO/ETO 6.426/6.283 R, IR 5.22/4.86 5.95
6.90/6.81

ELO/ETO 6.106/5.913 R, IR 5.73/5.64 6.36/6.21 6.33/6.33 3.85/3.66 5.42
5.73/5.73 6.48/6.33

ELO/ETO 4.487/4.487 R, IR 4.59/4.59 5.49/5.37 3.48/3.24 4.07
5.64/5.64

ELO/ETO 2.135/2.106 R, IR 2.34/2.34 2.32/2.13 2.09
2.34/2.34 2.34/2.34

ELO/ETO 1.568/1.560 R, IR 2.01/1.92 1.80/1.74 1.71/1.66 1.59
1.83/1.83 1.80/1.83

B1 6.601 R 6.20
6.87

B1 4.873 R 4.76
4.74 5.37

B1 2.312 R 1.85
3.51 2.01

BLO
2 /BTO

2 7.137/6.482 R, IR 8.21/7.44 6.96/6.42 6.99/6.45 6.85/6.25 7.15
6.99/6.51

BLO
2 /BTO

2 6.452/5.925 R, IR 5.88/5.64 5.79/5.43 5.94/5.94 5.07/4.89 5.82
5.82/5.82 6.00/5.31

BLO
2 /BTO

2 2.175/1.992 R, IR 1.95/1.92 2.13/2.10 2.36/2.11 1.65
2.88/2.88 2.16/2.10

matrix the non-analytical term proposed by Picket al [34], with Born effective charges taken
from reference [33] (0.475, 1.255, and−0.865 for Cu, In, and Se, respectively). As a result,
modes of B2 and E symmetries split to LO and TO components. The BTO

2 and BLO
2 modes

point to0 from thex- andz-directions, respectively. The E mode remains doubly degenerate
along0–Z directions, but splits into ETO and ELO components in the plane perpendicular to
the fourfold-symmetry axis. The frequency of the ETO components is equal to that of the E
mode, while ELO occurs at higher frequencies due to a contribution from effective charges.
Some E modes split very little, so the splittings are not visible in figures 1 and 2.

The primitive unit cell of chalcopyrite contains eight atoms; hence one expects 24
dispersion curves. As seen in figure 1, along the P–X direction all dispersion curves are
rather flat. Indeed, because the high-symmetry points P and X are close to each other, they do
not provide the possibility for a large dispersion. In addition, by symmetry, all modes along
P–X are doubly degenerate, which cancels the tendency for opposite dispersions of associated
modes. The phonon branches along the0–Z line are singly (10) and doubly (7) degenerate.
In all other directions, the phonon branches are singly degenerate. One may notice a small
negative region of a transverse acoustic mode near the0 point. We believe that this is not a real
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Figure 1. Calculated phonon dispersion curves for CuInSe2.
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Figure 2. Comparison of the calculated phonon dispersion curves of CuInSe2 (——) with
experimental results () from reference [13].

effect but arises from the finite size of the supercell. Indeed, long-range Coulomb interaction,
which dominates in this region, requires infinite summation unattainable in the direct method.
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This is also probably why the transverse acoustic modes on the line0–M deviate so much from
the experimental data (figure 2). This is just the direction with the least number of coordination
shells. We assume that this problem could be minimized by enlarging the supercell size. A
similar effect has been observed [36] for urea (P 4̄21m) where the acoustic phonon transverse
mode exhibits a similar negative region. There, it was shown that it arises from the finite size
of the supercell.

In figure 2 we compare our results with those measured recently by means of inelastic
neutron scattering along [100] and [001] directions. One can see that in the0–Z ([001])
direction the agreement with experiment, except for two optic branches, is very good.

The partial and the total phonon density of states,gi,α(ω) (wherei = x or z andα = Cu,
In, or Se) andg(ω), respectively, presented in figure 3 were obtained by sampling the dynamical
matrix at 10 000 randomly selected wave vectors. The histograms are normalized to∫

gi,α(ω) dω = 1

9

∫
g(ω) dω = 1

respectively. The total phonon density of states exhibits three well separated bands: the
acoustic region (0.0–2.5THz), the low optic region (3.0–4.5 THz), and the high optic region
(5.5–6.8 THz). Comparing, however, the partial phonon spectra for different atoms, one can
conclude that all sublattices in CIS crystal contribute equally to these three bands. Generally,
this is not always the case.
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Figure 3. The calculated total phonon density of states and atomic partial densities of states for
CuInSe2.

4. Conclusions

We conclude that the simulated structure of CuInSe2 is stable and has the same symmetry and
structure as found experimentally. The calculated lattice parameters are in good agreement
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with the experimental data. The calculated phonon dispersion curves fit well to the inelastic
neutron scattering data in spite of the small size of the supercell.

Acknowledgments

The use of computer facilities of ACC Cyfronet in Cracow is acknowledged (computational
grant No KBN/SGIORIGIN 2000/IFJ/127/1998). This work was partially supported by the
State Committee of Scientific Research (KBN), grant No 2 P03B 120 17.

References

[1] Zhong W, King-Smith R D and Vanderbilt D 1994Phys. Rev. Lett.723618
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